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The stability criterion for almost cylindrical dielectric liquid bridges subjected to 
axial electric fields in the presence of residual axial gravity is obtained. In its 
absence, a perfectly cylindrical equilibrium solution is allowed for all values of the 
relevant parameters, which are the slenderness of the liquid bridge, the electrical 
Bond number and the relative permittivity between the outer and inner media. This 
basic solution is unstable beyond a critical slenderness which varies with the 
electrical parameters (Gonzblez et al. 1989). The destabilization takes place 
axisymmetrically. The inclusion of the gravitational Bond number as a new, small 
parameter may be treated by means of the Lyapunov-Schmidt Method, a well- 
known projection technique that gives the local bifurcation diagram relating the 
admissible equilibrium amplitudes for the liquid bridge and the aforementioned 
parameters. As in the absence of applied electric field, the gravitational Bond 
number breaks the pitchfork diagram into two isolated branches of axisymmetric 
equilibrium solutions. The stable one has a turning point whose location determines 
the new stability criterion. Quantitative results are presented after solving the 
resulting set of linear recursive problems by means of the method of lines. 

1. Introduction 
The instability of liquid bridges has been investigated extensively in the last ten 

years, particularly in the context of microgravity applications, e.g. the floating-zone 
processing technique to produce large-diameter single crystals. More recently it has 
been shown that an axial electric field may have a strongly stabilizing effect in non- 
rotating/rotating isothermal cylindrical liquid bridges (Gonzalez et al. 1989 ; 
Gonzilez & Castellanos 1990). The stabilization is due to dielectric forces acting 
along the liquid column free interface. To this end the action of Coulomb forces 
originating from bulk and/or interface free charges must be avoided. This may be 
easily achieved if we apply an a x .  electric field with a period much shorter than the 
typical charge relaxation time, E/C, with E the electrical permittivity and c the 
electrical conductivity of the liquid. For melts of highly insulating materials (glasses, 
rocks) the industrial frequency (50Hz) is high enough and the application of a 
longitudinal electric field could have a beneficial effect on the processing of these 
materials, both on earth and in outer space. 

Imperfections of cylindrical columns are always present in experiments ir- 
respective of whether they are performed in satellites or on earth. On earth and for 
long liquid columns compared to the capillary length, an outer bath of an isodense 
liquid has to be used to compensate for the gravity effects. Unless the temperature 
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FIQURE 1. Schematic of the dielectric liquid bridge subjected to a potential difference a,,. 

is carefully controlled, small differences in densities will be present. This was the case 
of the experiments performed in our laboratory (GonzBlez et al. 1989) and we were 
interested in including the effect of residual axial gravity to account for the measured 
experimental data. In  satellites the residual accelerations and a reduced but non-zero 
gravity also limit the possibility of having perfectly cylindrical liquid bridges. 

The effect of axial residual gravity in the absence of the electric field has been 
considered by several authors (Coriell & Cordes 1977; Vega & Perales 1983), and it 
was concluded that it has a severe destabilizing influence. Thus, if we are interested 
in the description of liquid bridges, whatever the forces acting upon them, we must 
address the problem of the effect of the residual gravity on their stability. 

From the mathematical point of view, the inclusion of the gravitational Bond 
number as a new, small parameter leads to a singular problem if we look for a 
perturbative solution in this parameter. However, it is possible to  apply a general 
and powerful technique, the so-called Lyapunov-Schmidt reduction, that gives, in 
a natural way, the bifurcation diagram for the liquid bridge both with and without 
residual gravity. In the former case, information about the new stability criterion 
comes from the local nature of the bifurcation. Other imperfections, apart from a 
residual axial gravity, have been investigated using this method, e.g. eccentricity 
and differing radii of the anchoring disks. However, the inclusion of an electric 
field requires a non-trivial extension of the Lyapunov-Schmidt technique that we 
present in this work. The main difficulty comprises the consideration of more general 
Hilbert spaces where the nonlinear problem is defined as well as the treatment of 
nonlinear boundary conditions. 

2. Formulation of the problem 
The physical system under investigation is a dielectric liquid bridge between 

parallel electrodes, anchored at two equal-radius coaxial disks with free contact 
angles. We constrain the liquid volume to be that of a perfect cylinder, V = .nR2L, 
where R is the disk radius and L the distance between the electrodes (see figure 1 ) .  
These are considered wide enough to neglect any border effect when a constant 
potential difference @o is applied. 

As we are interested in microgravity conditions, like those achieved in a space 
laboratory, with a reduced gravity level, or using the plateau tank technique in a 
terrestrial laboratory, i.e. using an almost isodense immiscible bath, we restrict 
ourselves to small gravitational Bond numbers, defined by B = (pi -po)  gR2/u, pi and 
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po being the inner and outer fluid densities, u the surface tension between these fluids 
and g the acceleration due to gravity. 

The system is assumed to be formed by incompressible, homogeneous and charge- 
free liquids. Thus the electric forces that appear are of dielectric origin at  the 
interface. No electrostriction effect need be considered. 

Static configurations must satisfy the Navier-Stokes equations with zero velocity 
field and no time dependence giving 

( 1 )  
where p denotes the pressure (modified by the electrostrictive effect of the electric 
field), z is the axial coordinate and 17 takes two different values for each medium that 
we will call 'effective pressures'. 

The electromagnetic problem reduces to the solution of the Laplace equation for 
the electric potential $ in both media. The interface between them is described by 

(2) 
provided that only axisymmetric equilibrium shapes are admissible. A t  this surface 
we have to satisfy the Young-Laplace equation, augmented by the dielectric forces 
which are normal to the interface because of the absence of free charges. The 
complete set of partial nonlinear differential equations in non-dimensional form 
satisfied by the interfacial shape function f ( z ) ,  and the electric potential $(r ,  z )  is 

p+pgz = I7 = constant, 

F(r , z )  = r - f ( z )  = 0, 

VZ$ = 0, (3) 

A ~ ~ + B z + & A [ c ( V $ ) ~ ] - ~ A [ ~ ( V F  X * V$)2]+V * t~ = 0, 

V = 7c dz.fz, 
J -A  

along with the boundary conditions : 

(4) 

( 5 )  

-- "'-0 a t r = ~ ,  
ar 

lim$ = z + A ,  

A$ = 0, 

VF.A(sVq5) = 0, 

P-t, 
(9) 

where n is the outward normal vector to the interface defined as n = VF/IVFI 
evaluated at  F = 0 and the notation A means the jump of a quantity across the 
interface, also in the outward direction. These equations are made non-dimensional 
by scaling lengths by R, the electric field by its value for r+ co, E ,  = @,,/L, the 
pressure by the capillary jump across the interface g/R, and permittivities by that 
of the inner medium d. Four non-dimensional parameters appear in the above 
equations : the slenderness, A = L/2R, the gravitational Bond number already 
introduced, the relative permittivity of the outer to the inner medium, /l E e0/ei, and 
the electric Bond number, x = ei@;R/aL2. Notice that the non-dimensional 
permittivity is in general written as E ,  but /? stands for the outer medium and is unity 
for the inner one, i.e. A€ = /3- 1. 

7-2 
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The constraint upon the liquid bridge volume, equation ( 5 ) ,  has been considered 
as a governing equation to match the number of unknowns and equations. It is 
closely related to the jump in the pressure AI7. 

3. Cylindrical solution and its stability 

is an operator acting on a functional space 
Let us put the above set of equations in operational form as F ( x ,  7) = 0, where 9 

whose elements are 

x = ($Yr, 4, $ O ( r ,  Z),f(Z), A m .  (12) 

The components of this vector must satisfy the boundary conditions (6)-(11). The 
symbol 7 denotes any parametrical dependence of the operator that we might 
emphasize. 

If B = 0 the system has as a simple closed solution 

X, = ( ~ + A , z + / i , i ,  - l - & x A ~ ) ,  (13) 

that represents a cylindrical liquid bridge subjected to an uniform electric field. Now 
we look for other solutions close to x, by perturbing it slightly, x = x, +EX,, where 
E is a small amplitude of deformation and 

x, = (her, 4,43r,  Z),fo(4, An, ) .  (14) 

Substituting this into the general equations (3)-( 11) and retaining only first-order 
terms in E we have Ax, = 0, where A is the linear part of F at x,, expressed by 

A 

and now x, must verify the linearized boundary conditions 

$&r, * A )  = 0, 

40(0, 4 = 0 ( 1 ) ,  lim $&r,  2) = 0, 
r-+ m 

A$O = 0, 

This homogeneous problem has a non-trivial solution only for selected values of A ,  
/3 and x, called bifurcation points in the three-dimensional parameter space. It has 
been shown by Gonzalez et al. (1989) that the bifurcation points form an infinite set 
of nested non-intersecting surfaces in the parameter space defined implicitly by one 
of the following two equations : 
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FIGURE 2. Stability curves in the (x, A)-plane for different representative values of the permittivity 
ratio /3. The stable regions in the parameter space are those above the curves. Negative values of 
,y are plotted with dashed lines to indicate that they have no physical meaning. 

where 

with x, = nx/2A and Ha@, xn) = -/3[Kl(x,)K0(xn)] - [Il(xn)/Io(xn)], being I,, I,, KO 
andK, modified Bessel functions. In the cited reference, equations (21) and (22) were 
presented in a slightly different form. Here we use a more compact expression in 
order to infer further results in this section. 

The slenderness is shown to be an ordering parameter for the infinite set of 
bifurcation surfaces. Only that of least A (corresponding to a zero of S-) represents 
a transition from stability to instability of the cylindrical solution. We denote this 
bifurcation surface by x,(P, A ) ,  which is plotted in figure 2 for several values of p, 
including the experimentally tested case of /3 = 0.55. We have selected these values 
aiming to  summarize the behaviour of the stability curves presented in the above- 
mentioned work. Notice that we have plotted the curves including negative values 
of x, although only positive x are physically admissible from its definition. Later on 
we will see how these points serve to construct the stability curves for B + 0. 

It is possible to find the asymptotic behaviour of x,(P, A )  as A goes to infinity from 
that of the singular points of S-. This function diverges for every set of parameters 
giving qn = 0, n = 1 , 3 , .  . .,which will be represented by x,(P, A ) .  Between two 
consecutive singular points there exists one and only one zero of S-. In  particular, 
q1 = 0 and q3 = 0 give upper and lower bounds to the stability curve, i.e. x1 < xo < x3.  
If we look for the asymptotic behaviour of xn  as A + co from that of the intervening 
modified Bessel functions for small arguments we obtain the dominant behaviour 

where C is bounded and varies as slowly as l/ln(nx/2A). Obviously this latter 
expression is also valid for the asymptotic behaviour of xo. In figure 2 this behaviour 
is not apparent because the range of A of relevance in the experiment is limited. 
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FIGURE 3. Shapef,(z) and equipotential lines of the function q5,(~, z),  the bifurcating family at ,y = 
xo for /3 = 0.55 and A = 4. In the equipotential map: -, positive values of the electric potential; 
___ , negative values of the electric potential. 

The bifurcating family is 

A n o  = 0. (27) 
The electric potentials at the critical point are symmetric with respect to the middle 
plane z = 0, whereas the interface shape is anti-symmetric. The interface shape and 
some equipotentials are plotted in figure 3 for ,d = 0.55 and A = 4. 

It is convenient to describe the summation technique for series like those defining 
fo(z) or $,,(r, z )  and their derivatives evaluated at the interface, which are used later 
in this paper (see Appendix A). Let us fix our attention onfo(z). For n+ co the co- 
efficients have an asymptotic behaviour given by aJx; + a 2 / x i  + a3/xk + . . . = q& 
for some easily determined coefficients a,, a2, a3, . . . . If we substitute the original 
series by 

N m 

fo(z) -fON(z) C Q~'cos[x~(z+A)I+  C ~ ~ : ~ C O S [ X ~ ( Z + A ) I  
n=1 n=N+a 
odd odd 

N m 

= C (nil -qi:m) cos [xn(z + A)]  + C qi:rn cos [xn(z + A)] 7 (28) 
n=l n=1 
odd odd 

where N is an arbitrary odd number, the error will depend on both the number of 
terms actually included in q& and on N .  Retaining terms up to the order x i 4  the 
error is 

m 

f o ( z ) - f S ( ~ )  = C ( ~ i l - q ~ ; ; t , ) c o s [ ~ n ( ~ + ~ ) I  N (29) 
n=N+2 

odd 
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estimated by means of the integral criterion for summation applied to a series whose 
terms are of order l/n5. If N % 100 we obtain at least an accuracy of seven decimal 
figures. 

The final infinite series in (28) are of the type c, cos (ny)/n", p = 2,3,4.  For p odd, 
they are easily expressed in closed form. On the other hand, for p even, we can 
transform them into exponentially convergent series using residues summation 
techniques (see e.g. Collin 1991). In the case p = 3 we put 

where 0 < s < 1. The first series on the right-hand side of (30) converges 
exponentially. For the second one we consider the function of complex variable z 
defined by 

One has $ry(z) dz = 2xi C Res,,,zg(z) = 0, 
a 

where r is a circular integration contour of radius going to infinity and z, are the 
poles of g ( z )  where the residues of the function are calculated. The null value of the 
integral comes from the limit of the integrand as IzI --f 00. There exist simple poles at  
z = n (n integer) for all n =l 0 and a t  z = (2m + I)  ni/2s for all m integer. At z = 0 we 
have a third-order pole. Residues at real axis poles generate double the series that we 
need to calculate and residues at imaginary axis poles gives another series with 
exponential convergence. 

The method fails for values of y close to 0 or 2n. In these cases it is better 
to use an approximation based upon a Laurent expansion of xz-, cos (ny)/n = 
-In [2 sin (b)] which is twice integrated to give the corresponding expansion of 
C:=, cos (ny)/n3. 

All of these procedures are applicable to the calculus of any functional series of 
the type cnZp+,(y) = xz-l cos (ny)/n""" and sn,,(y) = Cr-, sin (ny)/n". On the 
other hand the functions cn,,(y) and sn,,+,(y) are polynomials of order 2p in the 
argument y. 

4. The Lyapunov-Schmidt method 
The main intent of this paper is to extend the stability analysis from B = 0, 

presented by GonzBlez et al. (1989), to cases where B,  although small, is non-zero. 
Using regular perturbation techniques based directly on the parameter B in the form 
x = x, + Bx, + B ' x B ~  + . . . and x = xo + BxB + . . . ) we readily find with an analysis 
similar to that of Gonzdez that the first-order solution is 
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where k = ( 5 "."..)/( 5 q i l ) .  
n=l n=1 
odd odd 

Putting x = 0 and considering A < 'it, we recover previous results without, an 
imposed electric field (Martinez 1983) : 

This method fails because k goes to infinity as x goes to xo (or A goes to  n: in the latter 
special case (37)).  This exhibits the singular nature of the problem. We must regard 
xB as the outer solution evaluated far from the critical point. 

These features are common to the already studied problem of almost cylindrical 
isorotating liquid bridges for small gravitational Bond numbers (Vega & Perales 
1983). In  that work and other related situations (Perales 1987 ; Perales, Sanz & Rivas 
1990) the Lyapunov-Schmidt method was successfully applied to obtain the 
stability behaviour for B =# 0 by means of a regular perturbation technique. This 
projection method enables us to find the bifurcation equation corresponding to a 
nonlinear partial differential problem, i.e. a relation between the parameters and the 
amplitudes of the bifurcating families for which there exists a solution to the 
nonlinear problem. In  our case a t  xo(p ,  A )  the bifurcating family is a single-parameter 
one, E being the only amplitude. 

4.1. Description 
Let us fix p and A ,  so that the symbol 11 only represents x and B. We look for solution 
sets (x, x ,B)  of 9 ( x ,  x, B)  = 0 which are a local extension of the bifurcation set (xr, 
xo,  0). Obviously the operator 9- evaluated a t  this latter set is not invertible and we 
cannot apply directly the implicit function theorem to obtain the desired local 
extension. Nevertheless, we can overlook this difficulty because A ,  the linear part of 
%, is a Fredholm operator since it has the following three defining properties: (i) its 
kernel has finite dimension; (ii) its adjoint operator, A*, has a kernel with the same 
dimension, and (iii) the original space 4 can be decomposed into a direct sum of the 
kernel of A and its orthogonal subspace, as well as the final space, denoted as &I,,, can 
be decomposed into a direct sum of the domain of A and that orthogonal to it. In  our 
case dim (Ker (A)) = 1. On the other hand defining the inner product as 

( X l ,  x2> = x o  d V d  & +Pxo p v 4  B1+[81 dfJfif2 +Anl An% s,. (38) 

with and V,  the inner and outer regions respectively, and X, its common boundary, 
it may be shown that the operator A is self-adjoint, so that the second property holds 
and the image of A coincides with the kernel of A*. Thus we can perform the 
decomposition x = E X , + X ~  in both isomorphous functional spaces gl and 98,, with 
xo belonging to ker(A) and xl to its orthogonal set. The important feature about 
Fredholm operators is that the equation Ax = y is equivalent to  the set Ax, = 
( 9 - 9 ) y ,  9 y  = 0, where 9 is the identity operator in g2 and 9 is the projection 
operator onto the orthogonal subspace to the image of A, so that 9-9 projects any 
vector belonging to LB. onto the image of A. Decomposing the original equation in the 
form F ( x ,  x , B )  = Ax+W(x, x , B )  = 0 and using the result about Fredholm operators 
we arrive to 

AX, = - (9 - 9) W (  XI - EX,,  2, B)  , (39) 
Y 9 ( x l  +EX, ,  x, B )  = 0, (40) 
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where the vector x has been explicitly decomposed. The problem is now solvable by 
the implicit function theorem because A is not singular when acting on the space 
orthogonal to its kernel and the right-hand side of (39) belongs to its image space. 

The above description of the Lyapunov-Schmidt method follows that of Myshkis 
et al. (1986). Another useful version of the method is directly introduced in Vega & 
Perales (1983). This latter work uses the fact that the projection of 9-3 onto the 
subspace orthogonal to the image of A can be expressed in the basis of the kernel of 
A, provided that A is a self-adjoint operator. Thus we have 

-PB(x,+Exo,X,B) = $ 4 X , B , E ) X O ,  (41) 
with @ a scalar dependent on the parameters and the amplitude of the bifurcating 
family. The equivalent problem is now 

The second equation can be read as $ ( E ,  x, B)  = 0, which is the bifurcation equation. 
I n  practice we solve this final problem by expanding xl = (pli,plo, u,AP), W and $ 

in the parameters = x - xo,  E and B : 

This yields an infinite set of linear non-homogeneous recursive problems whose 
general form is 

v2qi jk -  +ijk $0 = (45) 

p l i j k ( T >  * A )  = 0, (46) 

where the functions h$!(z), I = I ,  2 ,3 ,4 ,  come from the expansion of the nonlinear 
part of the operator and boundary conditions. They depend on the lower-order 
solutions, i.e. xl, i- l ,j ,  *, xl,i,j-l, k, x ~ , ~ , ~ ,  k - l ,  . . . , xo. In Appendix A we present a list of 
the functions h& for the orders just necessary to obtain the local bifurcation 
diagram, as discussed in the next paragraph. 

Along with equations (45)-(52), we have the relation between ykijk and .9&: 

$ijk<xO, xO> = - (xO, %jk>* (53) 

We must still determine the specific relation between Wijk and the functions hifk(z). 
This will be done in $4.3. 
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4.2. Xome symmetry properties 

Before attempting to compute recursively the solution to every linear problem, it is 
better to take advantage of some properties arising from the symmetries that leave 
invariant the full set of extended governing equations and boundary conditions, (42), 
(43) and (6)-(11). The transformation 

XJ-Z, E + - - E ,  U + U ,  v+-v, B+-B, $+-@, (54) 

u..  a1 k ( - 2 )  = ( -  l ) j + k + l  U.lj&), 971,k(r, -2) = ( - 1)i+lc+l v.ljk('> '1, (55) 

pijk = 0 if j + E is odd, (56) 

$.. a? k = O  i f j+kiseven,  (57) 

h(1)( %ik - x )  = (-  l ) j + k + l  hiij'(x), h$( -2) = ( -  l)j+k+l j2(2) .ljk('), (58) 

h(3) 6jk( - 2 )  = ( -  l ) j + k h / ~ L ( ~ ) ,  h$j'( -2) = ( -  l) '+khi;i(~). (59) 

(60) 

leads to the same problem. This implies 

as well as 

The result about $ allows us to  anticipate the type of bifurcation: 

'($110 x+ $O3Oe2)  + $ O O I B  +. . . = O .  

For B = 0 we have a pitchfork bifurcation and the gravitational Bond number breaks 
it into two isolated branches of solutions. A quantitative plot of (60) for both cases 
will be shown in a later section. 

4.3. The compatibility condition 

Here we obtain the expansion coefficients for @ from (53). In  that equation the factor 
(xo,xo) can be omitted because it does not depend on the subindexes and it is 
common to every term in the expansion of $. 

Some care must be taken in order to evaluate the inner product because it is 
defined in the Hilbert space that verifies the linearized boundary conditions 
(16)-(20). In particular, we have t,o relate the functions with qjk. To make this 
we consider the transformation 

(61) 

U i j k ( Z )  = G i j k ( z ) ,  nijk = %jk,  (62) 

with g i f k ( r ,  z ,  = [( h&(x) +hiji(2)] (63) 

a -  

v j j k ( r 9  x) = & k - g , j k ( r ,  z ) ,  9)$k(r ,  x )  = @:jk(r> z ) ,  

where S(z) is a 'window function' defined as the unity for 1x1 < A and zero otherwise. 
In  this way we have homogeneous boundary conditions for the new unknowns. The 
last factor in (63) is included to maintain homogeneous boundary conditions at the 
electrodes after the transformation. We are now able to identify 

The next step to determine $ijlc is to introduce this vector into (53). With the help 
of the second Green identity, the symmetry properties for g i j k  coming from those of 
h& and hi$, and some integrations by parts we arrive to the following compatibility 
condition : 
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Looking at  the bifurcation equation (60) we realize that the only linear problem to 
be completely solved is that of order Yc2Bo, i.e. the system of linear non- 
homogeneous equations (45)-(52) particularized for ( i j k )  = (020). The intervening 
non-homogeneous functions are listed in Appendix A. 

5. Numerical procedure: the method of lines 
We now address the problem of the numerical computation of the functions 

uO2,, and cpO2. We will drop all three subindexes through this section to make the 
reading easier. From symmetry considerations we know that ?+k = 0, u( -2) = u ( z )  
and p,(r, -2) = --rp(r,z) for both the inner and outer regions. The problem can be 
redefined in the upper half region z E [0, A]  because u and p, have definite parity, so 
that we replace the conditions u = p, = 0 at  z = - A  by du/dz = p, = 0 at z = 0. 

If we try to solve the problem by means of a discrete Fourier cosine transform in 
the variable z, as was done for the homogeneous problem by Gonzilez et ul. (1989), 
we readily find some trouble in evaluating the transforms of the non-homogeneous 
terms h(l)(z), because they are products of functions expressed by infinite slowly 
converging series. The transforms themselves are infinite series whose summation is 
a formidable task. 

Alternatively, we propose the use of a semianalytic method known as the method 
of lines in the literature (Graney & Richardson 1981 ; Mikhail 1987). Let us consider 
the whole new domain ( r ,  z )  E [0, m) x [O, A ]  decomposed into n+ 1 horizontal strips 
delimited by the lines zt = hi, i = 0,1, .  . . , n+ 1 with h = A / ( n +  1). At each line the 
functions to be found have the values u(zi) = u ~ ,  v(r ,z i )  = v i ( r ) .  We have the 
prescribed boundary conditions u,+~ = p,,,(r) = ~ , + ~ ( r )  = 0. Then, we build the 
vectors u = (uo, ul, . . . , u,) and rp(r) = (rpl(r),cp2(r), . . . ,rp,(r)) as the new unknowns. 

We now represent all z-derivatives of these functions by a fourth-order centred 
finite-difference scheme which is discussed in some detail later. The Laplace equation 
for the axisymmetric potential rp(r, z ) ,  

becomes a system of linear homogeneous ordinary differential equations, expressed 
in matrix form as 

[L(r )+D2qV)(r )  = 0, (67) 

where f ( r )  3 ( l /r )  a/ar ( ra /a r ) /  (/, the n x n unit matrix) and D ' V  the pentadiagonal 
matrix that represent the finite-difference scheme replacing the second-order z- 
derivative (see Appendix B). 

be the matrix that diagonalizes D a p ,  so that DV'T = TA, with A a diagonal 
matrix. We define a new vector, 

Let 

Q ( T )  = n q r ) ,  (68) 

(69) 

for which we have an uncoupled system of differential equations 

[L(r) +A] p(r) = 0. 

Defining p, such that A,, = -pi we have 
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as a convenient representation of the solution of the above system verifying 
the conditions (47). In matricial form we write for the original vector functions 
$44, q0(4  : 

&r )  = I 'M, ( r )  bi, ~ " ( r )  = I'MK(r) bo, (71)  

where M J r )  and M , ( r )  are diagonal matrices whose non-zero elements are 
lo(pk r ) / lo(pk)  and Ko(pk r ) /K0(pk) !  respectively, and the vectors b' and b" are 
constructed with the coefficients b i ,  bg, k = 1 ' 2 , .  . . , n. 

The radial dependence that we have found is clearly related to the solution of the 
Laplace equation by the separation of variables technique, only differing in the 
argument of the modified Bessel functions. Notice that we have already made 
implicit use of the homogeneous conditions at the upper electrode and at x = 0 when 
constructing the matrix OW. The independence of this procedure from the particular 
interfacial shape suggests that the method of lines is suitable for more general liquid 
bridge configurations. 

The next step is to discretize the remaining bour,dary conditions at the interface. 
Equations (49) and (50) read 

r (b"-bi )  = h(1), (72) 

(73) 
A€ 
2A 

r ( / 3 W K (  1)  bo --MI( 1)  bi) -- D1% = 

where we introduce the notation h(l) with 1 = 1, . . . , 4  for the vectors arising from the 
discretization of the corresponding functions h(l)(z), and Dl" stands for the 
discretization matrix of duldz (see Appendix B). We use primes for derivatives with 
respect to a single argument. 

For the pressure balance, equation (51), we have 

being D2" and D l V  the discretization matrices corresponding to d2u/dz2 and +/az 
respectively, 1 the (n + 1)-dimensional vector whose elements are all unity, and h'(l) 
the discretization of the function dh(l)/dz. 

Finally the integral condition (52) is discretized by means of the Simpson's 
integration rule, which is consistent with the fourth-order finite-difference schemes 
used so far. It is written as a scalar product 

(75) s - = S .  h(4) 

with s = +( 1,4,2,  . . . ,4 ,2 ,4 ,1)  an n-dimensional vector. 
Solving for b' and b" from (72) and (73) as a function of u and substituting the 

former vector into (74) finally gives the following algebraic system of (n+2)  
equations in the unknowns ui and p ,  written with the help of block matrices: 
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where we introduce the diagonal matrices M and H0(B, M), whose non-zero elements 
are the pi, i = 1, .  . . , n and Ho(/3,pi)  respectively. 

The linear system has a coefficient matrix whose elements are non-zero in general 
and it is actually solved by an appropriate standard routine from the IMSL package. 
Once we obtain u we have for the potential coefficients: 

(79) be" = p + r l h ( l ) .  

Finally, we give some details about the discretization of the z-derivatives. The 
fourth-order finite-difference scheme has been selected to give enough accuracy with 
fewer number of lines. The centred scheme is traditionally used for the sake of 
stability of the numerical algorithms. As a matter of fact, a forward difference 
scheme makes the arguments A, of the modified Bessel functions complex, which 
does not agree with the analytical resolution of the Laplace equation. Near z = 0 we 
can still use a centred scheme because the symmetries of u(x) and v ( r , z )  can be 
applied to  consider new lines outside the interval z E [0, A ]  without adding new 
unknowns. However, at  z = A we cannot do the same. We thus adopted a fourth- 
order forward-difference scheme involving the lines x , + ~ ,  z,, z,-~ and znP2 to represent 
the z-derivatives at z = z,. The resulting matricial representation of the four 
participating derivatives can be found in Appendix B. 

6. Results and discussion 
We have already established the nature of the bifurcation of the cylindrical 

solution as being of a pitchfork type, as well as the breaking effect of the 
gravitational Bond number on the bifurcation diagram, based exclusively upon 
symmetry arguments. On the other hand, we know that the cylindrical solution 
(B = O , E  = 0) is stable for x > xo and unstable for x < xo. These features are now 
completed. 

The most relevant information obtained from the subsequent numerical computation 
of the coefficients and $030 is that the bifurcation is subcritical for all tested 
values of p and A ,  i.e. ~ 0 3 0 / $ 1 1 0  < 0. I n  figure 4 we show the bifurcation diagram for 
the case p = 0.55 and A = 4. Physically the liquid bridge needs greater electric fields 
to  stabilize slightly deformed shapes. The represented amplitude has been 
renormalized as 

6.1. The case B = 0 

to deal with a parameter available in practice. 
With the help of the factorization theorem (Iooss & Joseph 1980) we can establish 

the stability of the cylinder to small but finite perturbations from this static study. 
According to this theorem, two families of solutions change their stability a t  a double 
point, as it is E = 0, x = xo, if the bifurcation is subcritical. Thus the parabolic 
branches represent unstable equilibria and divide the ( E ,  x)-plane into two regions : 
the inner region is the cylindrical solution attraction domain, while initial 
deformations with amplitudes lying on the outer region evolve to other equilibria, 
presumably to the breaking into two separate drops attached to each electrode. 
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FIGURE 4. Bifurcation diagram in the (~,,y)-plane for /3 = 0.55 and A = 4, showing a pitchfork 
structure for B = 0 and its breaking into two isolated branches for B = 0.01. ---, unstable 
branches and -, stable branches, except the line E = 0, which is unstable for x < xo. 
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The computation of the coefficients $030 and $llo indicates that the curvature of 
the parabolic branch is considerable, as shown in figure 5 ,  where we represent 
c = -2$030/$110 as a function of A for different p. The curvature of the parabola is 
related to the sensitivity of the liquid bridge to perturbations of finite amplitude. It 
increases monotonically with A and depends strongly on the relative permittivities : 
it increases as this parameter deviates from unity. Thus, for polarizable con- 
figurations not only the electric field necessary for stabilization is smaller but the 
bridge is less sensitive to finite-amplitude perturbations. 
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FIQURE 6. Shape and equipotentials given by the functions u,,,(z) and pozo(r, z ) ,  the corrections 
of order 2 in the expansion of f ( z )  and $ ( r ,  z ) ,  respectively. 

The computation also gives information about the function uoz0(z) that appears 
multiplied by in the expansion of u(z) in the parameters E ,  2 and B. This term is 
the lower-order correction to the shape of the interface given by the linear analysis. 
In figure 6 we plot uoz0(z) and an equipotential map of the function cpozo(r,z) for 
,5 = 0.55 and A = 4. The symmetry correlation is apparent. 

6.2. The injuence of gravity 

For B + 0, figure 4 shows the breaking of the pitchfork bifurcation diagram into two 
isolated branches. The cylindrical bridge is no longer a solution to the full equations. 
The factorization theorem is still applicable to this latter situation: a change in the 
stability behaviour at, and only at, the existing turning point is produced. The 
position of this turning point gives the new minimum electric Bond number for which 
there exists a solution close to the cylinder. In  terms of the coefficients 1//030,  l//llo and 
pool the stability criterion is now 

The law & implies that the effect of residual gravity upon the stability of the liquid 
bridge is not negligible. Moreover, the order of magnitude of the coefficient a is much 
greater than unity, as shown in figure 7 as a function of A for several B. Thus the 
correction due to gravity, even for low levels, is important. From the figure we 
observe an increase in the effect of gravity upon the stability of bridges with greater 
slenderness and fixed B. As a conclusion, longer bridges feel strongly the destabilizing 
effect of residual axial gravity. The amplitudes of deformation at criticality are 
defined by 
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FIGURE 7. Coefficient cc in the law x, = xo+& .us. A for different p. 
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FIGURE 8. Coefficient y in the law E, = y& versus A for different p, 

In  figure 8 we plot the coefficient y versus A.  Obviously, the cylinder is more 
distorted for greater slendernesses. However, a variation in the relative permittivity 
does not influence appreciably the critical deformation. 

In order to construct the new stability curves it is necessary to know the values 
xC(A,/3,B) for A < n. This region is not directly available from (81) unless we also 
consider the extension of the curves xo(/3, A )  for negative values (the dashed parts in 
figure 2 ) .  The alternative to this purely mathematical construction is to find the 
bifurcation equation for fixed x giving the relationship between the amplitude E and 
h = A,(/3, x) - A ,  the deviation of the slenderness with respect to the double point 
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bifurcation value (Ao(,!?, x) is the inverse function of xo(,!?, A ) ) .  We can deduce the 
bifurcation diagram in the ( E ,  A)-plane from that of the ( E ,  X)-plane. It is found that 
the bifurcation equation for fixed x has the expansion 

&(g$llOh + $030") + $OolB+ ' .  . = O ,  (83) 

where the functions $ i j k ( ~ ,  A ,  p) and ax/aA are evaluated at A,(/?, x). 
Both possibilities of construction of the new stability curves in the (x, A)-plane are 

not equivalent because they represent two ways of truncation of the exact bi- 
furcation equation. The first one leads to a vertical translation of the curve x0(p ,  A )  
to  give x,(,!?,A,B). The second one performs a horizontal translation to the left. 
The decision about which method is better comes from comparison between them for 
the case x = 0 available in the literature (Coriell, Hardy & Cordes 1977). From (83) 
we obtain an analytical expression for the stability curve in the following way : the 
coefficients $llo, $ool and @030 are evaluated using (65) with the functions hi:),,, hi:\ 
and respectively (the only necessity for zero applied electric field), which are 
given in the Appendix A. These functions must be evaluated for xo = 0. In particular, 
for f o ( z )  and uozo(z) we obtain the functions given by Vega & Perales : 

fo(z) = csinz, uozo(z) = - jcz l-cos- , ( 2;z) 

c being some known constant arising from a different normalization. Introducing 
these functions in (65) we obtain 

lcIOOl = 2xc, +030 = - 3 t C 4 .  (85) 

On the other hand we have 

where use of (25) and (26) has been made. The factor d;yo/dA is given by 

defined in (21). These derivatives are evaluated at  A = n,  

The resulting bifurcation equation truncated in E and h = n: - A gives the stability 
criterion 

A ,  = ~ [ l -  (3"], (90) 
which is in accordance with Vega & Perales' work. This gives confidence about the 
derivation of (83). However, from the first method of construction of the stability 
curves we can obtain A, as that value for which xc = 0 (see figure 9). In  table 1 we 



202 H .  Conzcilez and A .  Castellanos 

FIGURE 9. Two possible ways to build the stability curves x , (p ,A ,B)  from A ) ,  particularized 
for the point xL = 0:  (a)  Given B =k 0 there exist some A ,  < x such that, in spite of the negative 
value of xo(Ao) ,  the isolated branch having the turning point a t  x, = 0 has physical meaning. The 
solid lines in the bifurcation diagram give true information about admissible stable or unstable 
equilibrium solutions with and without residual gravity. ( 6 )  Fixed x leads to a bifurcation diagram 
in the (~,A)-plane having a turning point whose location determines Ac.  Both ways are not, 
equivalent (see text). 

compare the values given by both methods with numerical data (Coriell et al. 1977). 
The bridge stability in the absence of an electric field is found more accurately with 
the help of the electrical parameter x. 

In  figure 10 we present the stability criteria using vertical translation for different 
levels of gravity, namely B = lop2 and lop1, compared with the curve for B = 0 
and some available experimental data (GonzBlez et al. 1989). These curves have also 
been obtained by finite-element techniques valid for arbitrary gravitational Bond 
number, presented in a companion paper (Ramos & Castellanos 1993). Comparison 
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FIGURE 10. Stability curves for different gravitational Bond numbers (including B = 0), 

compared with experimental available data (GonzBlez et al. 1989). 

B 

0.000258 
0.000702 
0.002 39 
0.007 22 
0.0100 
0.0162 
0.0200 
0.0518 
0.100 

4 
3.120 
3.100 
3.051 
2.965 
2.928 
2.862 
2.829 
2.639 
2.473 

Coriell et al. Vega & Perales 

3.12 3.119 
3.10 3.099 
3.05 3.045 
2.96 2.940 
2.92 2.891 
2.85 2.796 
2.815 2.744 
2.60 2.392 
2.405 1.979 

TABLE 1. Comparison between the critical slenderness for x = 0 obtained by different methods. The 
first column shows the gravitational Bond numbers ; the other columns gives the corresponding 
values of A, obtained with the help of an E - x  diagram, by Coriell et a1. 1977 and by Vega & Perales 
1983 (based in an & - A  diagram) 

between both independent approaches to the problem gives a full agreement up to 
Bond numbers of the order of lop2 and deviation beyond this order. This determines 
the range of validity of our perturbative theory. 

In the previous work it was suggested that the poor agreement between the curve 
B = 0 and experiments for small slendernesses was due to residual gravity effects. 
This assertion seems to be correct, but, conversely, the new stability criterion 
diverges for greater A from the experimental data. A possible explanation for this 
discrepancy may lie in the effect of the metallic rings used to anchor the liquid 
bridge. The inclusion of this feature in the theoretical model or the use of another 
anchoring method to avoid electric field singularities may improve the agreement 
between theory and experiment. On the other hand, as the gravitational Bond 
number associated to each experimental point was not carefully controlled, we need 
further experiments to confirm our results quantitatively. 
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7. Conclusions 
It was stated in a previous work that an axial electric field had a stabilizing effect 

on a cylindrical dielectric liquid bridge. Through the construction of a theoretical 
model to take into account the effect of residual axial gravity we incidentally found 
a pitchfork subcritical bifurcation diagram for this configuration, which gives 
information about its sensitivity to small but finite deformations. The electric field 
intensity needed to  hold stable slightly deformed bridges increases considerably with 
respect to  the linear stability criterion, specially for long liquid bridges. 

Axial residual gravity acts as a permanent deforming agent, so that its 
destabilizing effect is very important. The new stability criterion diverges from that 
with B = 0 as A increases, a fact which is in accordance with the above-mentioned 
sensitivity to  small disturbances. This behaviour can be used to measure low 
acceleration levels with the help of long liquid bridges. 
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